VINYLIC CATIONS FROM SOLVOLYSIS. XIV. ANISYL REARRANGEMENT IN THE ACETOLYSIS OF β , β -DIANISYL- α -PHENYLVINYL BROMIDE Zvi Rappopcrt , Aharon Gal end Yorsm Houminar Department of Orgsnio Chemistry , The Hebrew University , Jerusalem , Israel

(Received in UK 29 December 1972; accepted for publication 17 January 1973)

1,2-Rearrangements across the double bond during the solvolysis of aryl-subetituted vinylic compounds are known for α , β -diaryl- β -arylthio (or alkylthio) 2,4,6-trinitrobenzenesulfonates,¹ and for β -phenyl-² and β , β -diphenyl- α -methylvunyl³ systems. The only reported rearrangements in triarylvinyl systems are in the acid-catalyzed decomposition of vinyltriazenes via vinyldiazonium and vinyl cations.⁴ β , β -Dianisyl- a-phenylvinyl bromide (I-Br) seemed to us a favourable system for rearrangement during the C-Br heterolysis. 5

Reflux of 25 mM of I-Br with 35 mM of AgOAc in dry AcOH for 1 hr gave two acetates ($>90\%$ by nmr) with signals at δ 1.87 and 1.92 in a ratio of 1:1. No other acetory signal was observed. These signals were assigned to the cis-acetate II-OAc (m.p. 117-8^o, δ (CDCl₃): 1.87)⁶ and to its trans isomer III-OAc (m.p. 140[°], $\frac{100}{9}$, $\frac{100}{9}$). A repeated crystallization (from EtOH) of the 1 : 1 mixture obtained from 0.17 M of I-Br and 0.18 M of AgOAo gave a fraction , m.p. 130-1⁰

which was composed of 80% III-OAc and 20% of II-OAc, and another fraction, m.p. 111-2°, which consisted of 70% of II-OAc and $30/2$ of III-OAc (by nmr and ir). Acetolysis of 0.014 M of I-Br in the presence of 0.84 M of NaOAc at 160° for 21 hrs (\sim 20% reaction) gave only II-OAc and III-OAc in a 1 : 1 ratio.

Aoetolysis of IV-Br with two molar equivalents of AgOAc for 6 hrs (100% reaction by nmr and tle) gave exclusively two acetates with signals at δ 1.85 and 1.92 (in CDCl₃) in a ratio

point experiment at low reaction percentages. d Data for IV-Br.

of 45:55 and two methoxy signals at δ 3.60 and 3.68 in the same ratio, indicating the exclusive formation of IV-OAc and V-OAc. Indeed, the other possible product VI-OAc, showed only one acetory and one methoryl signals at δ 1.95 and 3.70. ⁷ The same 45:55 ratio was also obtained for partially solvolyzed reaction mixtures, and at 30% reaction the unreacted bromide consisted of 9 : 1 mixture of IV-Br to V-Br.

The kinetic data for the buffered acetolysis of I-Br and some approximate one-point experiments with IV-Br and $Ph_0C=C(Br)Ph$, which are too slow to follow completely at our reaction temperatures are given in the Table. The reaction of I-Br is faster at higher NaOAc concentration, it shows no common ion rate depression in the presence of added Bu, NBr (which accelerates the reaction as a salt with a Winstein's b value 8 of ca. 10), and is slightly affected by changing the base from NaOAc to LiOAc.

I-Br was recovered unchanged (m.p., nmr, tlc) from reflux for 24 hrs in formic acid containing 0.04 M of sodium formate.

The kinetics and the product distribution of the reaction fit an S_N1 mechanism which will be discussed in terms of the following scheme. VII, VIII and IX are the unrearranged, the bridged and the rearranged ions, respectively; k_{Br} and k_{OAc} are the rate coefficients for the capture of the various cationic species (which appear in the superscripts) by bromide and acetate ions, respectively. The Br⁻ and OAc⁻ were ommitted from the scheme for

convonience.

The formation of a l : l mixture of II-OAo and III-OAc argues strongly that the products are derived from the linear cation IX, which gives the same acetate mixture when formed directly from the solvolysis of II-Br or III-Br. 6 The alternative possibility, i.e., $\overbrace{YIII} \xrightarrow{K^{V111}_{BT}} II-Br \xrightarrow{k_1'} II-\text{OAo} + III-\text{OAo} (1:1)$ is unlikely; capture of VIII by bromide and acetate ions would give a $\left[\text{II}-\text{Br}\right] / \left[\text{II}-0\text{A}\text{o}\right]$ ratio equal to $\left(\text{k}_{\text{Br}}^{\text{VIII}} / \text{k}_{\text{OAG}}^{\text{VIII}}\right)$ ($\left[\text{Br}^{\text{-}}\right] / \left[\text{OAG}^{\text{-}}\right]$) At our concentrations $[\text{Br}^-] / [\text{OAc}^-]$ is always lower than 0.017, and $\text{k}_{\text{Br}}^{\text{VIII}} / \text{k}_{\text{OAc}}^{\text{VIII}}$ is not lik \tilde{f}_{1y} to be greater than 8, which is the value found for k_{BT}^{IX}/k_{OAc}^{IX} , 9 The justification for using IX as a limiting model for VIII is that k_{Br}/k_{0A0} ratios for α -arylvinyl cations increase with the crowding of the substituents around the cationic orbital, 10,11 and VIII is less hindered from its unbridged side than IX. Hence, the main product from VIII would be II-OAc, contrary to what was found. Moreover, the capture of VIII by Br should be depressed in the presence of AgOAc, conditions under which the II-OAc to III-OAc ratio is still 1 : 1.

Since neither common ion rate depression was observed, nor I-OAc formed, the rearrangement of VII (k_{near}) is much faster than its reactions with both bromide $(k_{\text{Br}}^{\text{VII}})$ and acetate (k_{0Ac}^{VII}) ions. Both the transition state of the rearrangement and the rearranged ion IX are stabilized by anisyl groups, causing complete rearrangement in AcOH , in trifluoroethanol¹² and in $60\frac{7}{3}$ EtOH.¹² In contrast, the β , β -di-p-tolyl- α -phenylvinyl cation rearranges only partially in AOOH and is completely captured by excess acetate ion before rearrangement.⁴

The 13-fold higher reactivity of I-Br compared with $Ph_0C=C(Br)Ph$ (similar ratios were found also in trifluoroethanol and in $60/5$ EtOH)¹² may suggest that the trans- β -anisyl group participates in the transition state of the heterolysis, i.e., that the I-Br \longrightarrow VIII transformation has only one transition state. However, II-Br and III-Br solvolyze with similar rates¹³ and both cis and trans β -monoanisyl substrates (e.g., IV-Br and V-Br) solvolyze with similar rates and 3-4 times faster than $Ph_0C=C(Br)Ph_*$ ¹² It is not yet clear why both <u>cis</u> and trans anisyl groups enhance the solvolytic reactivity. However, the additivity of the effects of the cis and the trans anisyl groups can account for the enhanced reactivity of I-Br

without invoking g-anisyl participation.

The absence of phenyl migration in the acetolysis of IV-Br is in contrast to the phenyl migration which occurs in trifluoroethanol.¹² The possibility of a degenerate β -anisyl migration in the intermediate ion $Ph(\Delta n)C = CPn$ is now being investigated with a labelled compound. The occurrence of $IV-Br \rightarrow V-Br$ isomerization concurrently with the acetolysis suggests that bromide ion return to covalent bromide from the AgBr molecule - vinyl cation pair is possible. Such behaviour has precedents in vinylic systems. $9,14$

The unreactivity of I-Br in HCOOH under conditions in which II-Br is solvolytically reactive ^{13a} argues strongly against an electrophilic addition-elimination ¹⁵ as a competing route in the formolysis of II-Br, since II-Br should be less reactive in electrophilic addition than I-Br.

Acknowledgement : We are indebted to the Volkswagen Foundation which supported part of this work.

REFERENCES

- 1. G. Modena and U. Tonellato, Adv. Phys. Org. Chem., 9 9, 185 (1971).
- 2. P. J. Stang and T. E. Dueber, J. Amer. Chem. Soc., in press, quoted by P. J. Stang in Prog.Phys.Org.Chem., in press. We thank Prof. Stang for a preprint.
- 3. M. Imhoff , R. H. Summerville , P. v. R. Schleyer , A. G. Martinez , M. Hanack, T. E. Dueber and P. J. Stang, J. Amer. Chem. Soc., 92, 3802 (1970).
- 4. W. M. Jones and F. W. Miller, J.Amer.Chem. Soc., 89, 1960 (1967).
- 5. Quoted first as a personal communication by M. Hanack, Accounts Chem. Res., 3, 209(1970).
- 6. Z. Rappoport and Y. Apeloig, J. Amer. Chem. Soc., 91, 6734 (1969).
- 7. A. Gal, Ph.D. Thesis, The Hebrew University, Jerusalem, 1972.
- 8. A. H. Fainberg and S. Winstein, J. Amer. Chem. Soc., 78, 2780 (1956).
- 9. Z. Rappoport and Y. Apeloig, unpublished results.
- 10. Z. Rappoport and A. Gal, Tetrahedron Lett., 3233 (1970).
- 11. Z. Rappoport and J. Kaspi, J.Chem. Soc., Perkin II, 1248 (1972).
- 12. Y. Houminer and Z. Rappoport, Abstract of the 42nd Meeting of the Israel Chemical Society, Rehovoth, December $4-6$, 1972, p. 8.
- 13. Z. Rappoport and Y. Apeloig, Tetrahedron Lett., (a) 1817 (1970); (b)1845 (1970).
- 14. D. R. Kelsey and R. G. Bergman , J. Amer. Chem. Soc., 93, 1941 (1971).
- 15. W. M. Schubert and G. W. Barfknecht, J.Amer.Chem.Soc., 92, 207 (1970) ; Z. Rappoport,
	- T. Bassler and M. Hanack, J. Amer. Chem. Soc., 92, 4985 (1970).